Swiss ephemeris 4 Computer ephemeris for developers of astrological software 4

Download 1.21 Mb.
Size1.21 Mb.
1   2   3   4   5   6   7   8   9   ...   17

2.4 Comets

The Swiss Ephemeris does not provide ephemerides of comets yet.
    1. 2.5 Fixed stars and Galactic Center

A database of fixed stars is included with Swiss Ephemeris. It contains about 800 stars, which can be computed with the swe_fixstar() function. The precision is about 0.001”.

Our data are based on the star catalogue of Steve Moshier. It can be easily extended if more stars are required.

The database was improved by Valentin Abramov, Tartu, Estonia. He reordered the stars by constellation, added some stars, many names and alternative spellings of names.

In Feb. 2006 (Version 1.70) the fixed stars file was updated with data from the SIMBAD database (

In Jan. 2011 (Version 1.77) a new fixed stars file sefstars.txt was created from the SIMBAD database.
    1. 2.6 ‚Hypothetical' bodies

We include some astrological factors in the ephemeris which have no astronomical basis – they have never been observed physically. As the purpose of the Swiss Ephemeris is astrology, we decided to drop our scientific view in this area and to be of service to those astrologers who use these ‘hypothetical’ planets and factors. Of course neither of our scientific sources, JPL or Steve Moshier, have anything to do with this part of the Swiss Ephemeris.
      1. Uranian Planets (Hamburg Planets: Cupido, Hades, Zeus, Kronos, Apollon, Admetos, Vulkanus, Poseidon)

There have been discussions whether these factors are to be called 'planets' or 'Transneptunian points'. However, their inventors, the German astrologers Witte and Sieggrün, considered them to be planets. And moreover they behave like planets in as far as they circle around the sun and obey its gravity.

On the other hand, if one looks at their orbital elements, it is obvious that these orbits are highly unrealistic. Some of them are perfect circles – something that does not exist in physical reality. The inclination of the orbits is zero, which is very improbable as well. The revised elements published by James Neely in Matrix Journal VII (1980) show small eccentricities for the four Witte planets, but they are still smaller than the eccentricity of Venus which has an almost circular orbit. This is again very improbable.

There are even more problems. An ephemeris computed with such elements describes an unperturbed motion, i.e. it takes into account only the Sun's gravity, not the gravitational influences of the other planets. This may result in an error of a degree within the 20th century, and greater errors for earlier centuries.

Also, note that none of the real transneptunian objects that have been discovered since 1992 can be identified with any of the Uranian planets.

SWISSEPH uses James Neely's revised orbital elements, because they agree better with the original position tables of Witte and Sieggrün.

The hypothetical planets can again be called with any of the three ephemeris flags. The solar position needed for geocentric positions will then be taken from the ephemeris specified.

      1. Transpluto (Isis)

This hypothetical planet was postulated 1946 by the French astronomer M.E. Sevin because of otherwise unexplainable gravitational perturbations in the orbits of Uranus and Neptune.

However, this theory has been superseded by other attempts during the following decades, which proceeded from better observational data. They resulted in bodies and orbits completely different from what astrologers know as 'Isis-Transpluto'. More recent studies have shown that the perturbation residuals in the orbits of Uranus and Neptune are too small to allow postulation of a new planet. They can, to a great extent, be explained by observational errors or by systematic errors in sky maps.

In telescope observations, no hint could be discovered that this planet actually existed. Rumors that claim the opposite are wrong. Moreover, all of the transneptunian bodies that have been discovered since 1992 are very different from Isis-Transpluto.

Even if Sevin's computation were correct, it could only provide a rough position. To rely on arc minutes would be illusory. Neptune was more than a degree away from its theoretical position predicted by Leverrier and Adams.

Moreover, Transpluto's position is computed from a simple Kepler ellipse, disregarding the perturbations by other planets' gravities. Moreover, Sevin gives no orbital inclination.

Though Sevin gives no inclination for his Transpluto, you will realize that there is a small ecliptic latitude in positions computed by SWISSEPH. This mainly results from the fact that its orbital elements are referred to epoch 5.10.1772 whereas the ecliptic changes position with time.

The elements used by SWISSEPH are taken from ”Die Sterne” 3/1952, p. 70. The article does not say which equinox they are referred to. Therefore, we fitted it to the Astron ephemeris which apparently uses the equinox of 1945 (which, however, is rather unusual!).
      1. Harrington

This is another attempt to predict Planet X's orbit and position from perturbations in the orbits of Uranus and Neptune. It was published in The Astronomical Journal 96(4), October 1988, p. 1476ff. Its precision is meant to be of the order of +/- 30 degrees. According to Harrington there is also the possibility that it is actually located in the opposite constellation, i.e. Taurus instead of Scorpio. The planet has a mean solar distance of about 100 AU and a period of about 1000 years.
      1. Nibiru

A highly speculative planet derived from the theory of Zecharia Sitchin, who is an expert in ancient Mesopotamian history and a ”paleoastronomer”. The elements have been supplied by Christian Woeltge, Hannover. This planet is interesting because of its bizarre orbit. It moves in clockwise direction and has a period of 3600 years. Its orbit is extremely eccentric. It has its perihelion within the asteroid belt, whereas its aphelion lies at about 12 times the mean distance of Pluto. In spite of its retrograde motion, it seems to move counterclockwise in recent centuries. The reason is that it is so slow that it does not even compensate the precession of the equinoxes.
      1. Vulcan

This is a ‘hypothetical’ planet inside the orbit of Mercury (not identical to the “Uranian” planet Vulkanus). Orbital elements according to L.H. Weston. Note that the speed of this “planet” does not agree with the Kepler laws. It is too fast by 10 degrees per year.
      1. Selena/White Moon

This is a ‘hypothetical’ second moon of the earth (or a third one, after the “Black Moon”) of obscure provenance. Many Russian astrologers use it. Its distance from the earth is more than 20 times the distance of the moon and it moves about the earth in 7 years. Its orbit is a perfect, unperturbed circle. Of course, the physical existence of such a body is not possible. The gravities of Sun, Earth, and Moon would strongly influence its orbit.
      1. Dr. Waldemath’s Black Moon

This is another hypothetical second moon of the earth, postulated by a Dr. Waldemath in the Monthly Wheather Review 1/1898. Its distance from the earth is 2.67 times the distance of the moon, its daily motion about 3 degrees. The orbital elements have been derived from Waldemath’s original data. There are significant differences from elements used in earlier versions of Solar Fire, due to different interpretations of the values given by Waldemath. After a discussion between Graham Dawson and Dieter Koch it has been agreed that the new solution is more likely to be correct. The new ephemeris does not agree with Delphine Jay’s ephemeris either, which is obviously inconsistent with Waldemath’s data.

This body has never been confirmed. With its 700-km diameter and an apparent diameter of 2.5 arc min, this should have been possible very soon after Waldemath’s publication.

      1. The Planets X of Leverrier, Adams, Lowell and Pickering

These are the hypothetical planets that have lead to the discovery of Neptune and Pluto or at least have been brought into connection with them. Their enormous deviations from true Neptune and Pluto may be interesting for astrologers who work with hypothetical bodies. E.g. Leverrier and Adams are good only around the 1840ies, the discovery epoch of Neptune. To check this, call the program swetest as follows:

$ swetest -p8 -dU -b1.1.1770 -n8 -s7305 -hel -fPTLBR -head

(i.e.: compute planet 8 (Neptune) - planet 'U' (Leverrier), from 1.1.1770, 8 times, in 7305-day-steps, heliocentrically. You can do this from the Internet web page swetest.htm. The output will be:)

Nep-Lev 01.01.1770 -18° 0'52.3811 0°55' 0.0332 -6.610753489

Nep-Lev 01.01.1790 -8°42' 9.1113 1°42'55.7192 -4.257690148

Nep-Lev 02.01.1810 -3°49'45.2014 1°35'12.0858 -2.488363869

Nep-Lev 02.01.1830 -1°38' 2.8076 0°35'57.0580 -2.112570665

Nep-Lev 02.01.1850 1°44'23.0943 -0°43'38.5357 -3.340858070

Nep-Lev 02.01.1870 9°17'34.4981 -1°39'24.1004 -5.513270186

Nep-Lev 02.01.1890 21°20'56.6250 -1°38'43.1479 -7.720578177

Nep-Lev 03.01.1910 36°27'56.1314 -0°41'59.4866 -9.265417529

(difference in (difference in (difference in

longitude) latitude) solar distance)

One can see that the error is in the range of 2 degrees between 1830 and 1850 and grows very fast beyond that period.

    1. Download 1.21 Mb.

      Share with your friends:
1   2   3   4   5   6   7   8   9   ...   17

The database is protected by copyright © 2020
send message

    Main page