Note: Marks may be awarded for carefully drawn and correctly labelled diagrams. First meiotic division

Download 75.5 Kb.
Size75.5 Kb.
Give an account of meiosis under the following headings:

(i) first meiotic division 6 marks

(ii) second meiotic division 2 marks

(iii) importance of meiosis 2 marks


Note: Marks may be awarded for carefully drawn and correctly labelled diagrams. First meiotic division:

1. start with a gamete mother cell/diploid cell 1

2. each chromosome made up of two chromatid 1

3. homologous chromosomes pair up (Not: homologous pairs join up) 1

4. crossing over may occur 1

5. at chiasmata 1

6. nuclear membrane disappears OR spindle forms 1

7. independent assortment occurs OR (homologous) chromosomes line up on equator 1

8. homologous chromosomes/pairs are pulled apart 1

9. new nuclear membrane formed OR division of cytoplasm. 1

Maximum 6 marks

Second meiotic division:

10. chromosomes line up on equator and chromatids pulled apart
11. new nuclear membrane formed OR division of cytoplasm
(award point 9 once only - EITHER in context of first OR second meiotic division)

12. four cells produced.

Maximum 2 marks

Importance of meiosis:

13. produces haploid gametes/cells OR chromosome number halved

14. crossing over gives recombination/variation/diversity

14. independent assortment gives variation/diversity

15. meiosis/it gives variation/diversity

(award point 15
ONLY if points 13+14 gain 0 marks)

Maximum 2 marks

Note: Do NOT award points 4, 5, 7 or 8 if in the context of the second meiotic division.

Write an account of DNA under the following headings:

(a) DNA replication 5 marks

(b) Gene mutations 5 marks

(a) DNA replication

• needs ATP and enzymes

• DNA unzips / hydrogen bonds break

• Bases on each strand are exposed

• Free DNA nucleotides present

• nucleotides align /bond/ pair / join with complementary bases on DNA strands

• aligned nucleotides now join to make a complementary strand through phosphate to

• Now two identical DNA molecules / strands are formed

• one strand in each daughter DNA is an original strand
5 marks only out of 8

(b) Gene mutations

• gene mutations alter the order/ sequence of the bases / nucleotides in the DNA / gene

• occurs at random

• types of gene mutations substitution

deletion all 4 give 1mark

• substitution - one or more bases / nucleotides replaced

• inversion - two or more bases / nucleotides swop over / change position

• insertion - one or more bases / nucleotide added

• deletion - one or more bases / nucleotide removed
any 2 correct award 2 marks

• this makes the codon / base triplet wrong / altered pattern

• wrong sequence of amino acids in protein

• could be beneficial or harmful

• mutagenic agents increase mutation or give example
5 marks only out of 9

1. A Give an account of gene mutation under the following headings:

(i) occurrence of mutant alleles and the effect of mutagenic agents 3 marks

(ii) types of gene mutations and how they alter amino acid sequences 7 marks

(i) occurrence of mutant alleles and the effect of mutagenic agents

1. Random/spontaneous/by chance 1

2. Low frequency/ rare 1

3. One type of mutagenic agent eg chemicals or named chemical such as mustard gas 1

4. A second type of mutagenic agent eg radiation or named type of radiation as X-

rays, gamma rays, UV light 1

5. Mutagenic agents cause or induce mutations/increase mutation rate/increase

chance of a mutation occurring/increase frequency of mutation 1

Maximum 3 Marks

(ii) Types of gene mutation and how they alter amino acid sequences

6. Gene mutation is a change in the bases/base types /base sequence/base order
Note: this must be stated, and cannot be shown in a diagram. Also, nucleotide can
be taken as equivalent to base. 1

Points 7, 8, 11 and 12 may be shown as suitably labelled diagrams with only bases A,T,GandCused.

7.. Substitution: base/bases - replaced with another/others (1)

8. Inversion: order of bases reversed/bases turned round (1)

9. Substitution/Inversion may change base order of codon

OR Substitution/Inversion is a point mutation (1)

10. Substitution/Inversion may change only one/two amino acid(s) (1)

11. Deletion: base/bases - deleted from chromosome/removed/taken out (1)

12. Insertion: base/bases - inserted into chromosome/added/put in (1)
12a. Substitution, inversion, deletion and insertion ALL named

Note: the mark for 12a can only be awarded if zero marks scored in 7+8+11+12 (1)

13. Deletion/Insertion changes codons/triplets after the mutation

OR Deletion/Insertion is a frameshift mutation (1)

14. Deletion/Insertion changes all amino acids after the mutation (1)

15. Protein made (following substitution or inversion) will work/will be unaffected
OR Protein made (after deletion or insertion) will not function/will not work/is the wrong protein/enzyme (1)

Maximum 7 Marks

Maximum Total = 10 Marks


Give an account of the evolution of new species under the following headings:

(i) isolating mechanisms • " - 4
(ii) effects of mutations and natural selection. 6
Note: Marks may be awarded for carefully drawn and correctly labelled diagrams. Isolating mechanisms:

1. a species is a group of organisms interbreeding to produce fertile offspring 1

2. common gene pool 1

3. a species/a population separated into two by an isolating mechanism/barrier 1

4. prevents gene exchange/gene flow/interbreeding between populations/groups 1

5. two types of isolation given (eg geographical/ecological) 1

6. third type of isolation given (eg reproductive). 1

Maximum 4 marks

Effects of mutations and natural selection:

7. mutations occurring in each population/group will be different

OR mutation occurs in one group

8. (mutation) gives variation/different phenotypes/new genes/new alleles/alters gene pool

9. different environments

10. selection is different for each population/group

11. best adapted/best suited survive OR survival of the fittest OR converse

12. (they/best adapted/best suited/fittest) pass on favourable characteristics/genes/alleles to offspring/next generation

OR less well adapted/less suited/less fit do not pass their characteristics/genes/alleles to
offspring/next generation

13. many generations/long period of time

14. new species formed when populations/groups can no longer interbreed.

Maximum 6 marks

Essay Give an account of the role of isolation mechanisms in the evolution of new species

Isolation mechanisms

1 Isolation mechanisms separate populations of the same species

2 Geographical / ecological / reproductive or example from each

3 Prevent populations from interbreeding or prevents gene flow between populations Speciation

4 Mutations within each populations will show differences (produce new phenotypes)

5 Environments that each population is in will be different

6 (Natural) Selection in each population will be different

7 Best adapted will be selected to survive / survival of the fittest

8 They will then reproduce and pass on the favourable genes

9 Each population will evolve along separate paths / adapt to the different environments

10 After a long period of time isolated populations can no longer interbreed

11 There is now 2 new species evolved from the one original species

Maximum 8 marks


1 Essay subdivided into two paragraphs isolation mechanisms + speciation

2 2 points must be gained in each part

3 2 points from isolation must come first and then the 2 points from speciation Any 2 out of the above 3 to get the coherence mark


1 Must NOT give any information on artificial selection

2 Must have at least 4 marks out of the 8 Must have 1 & 2 above to get the relevance mark
Give an account of artificial selection with reference to selective breeding and somatic fusion

Selective breeding

1 Organisms with desired / favourable genes / characteristics are chosen to breed

2 Selection continues for several generations

3 Results not guaranteed as process is random

4 This will increase the numbers of organisms with the desired characteristic

5 Example of improved characteristic:

High yield of milk /beef

Improved crop yield

Improved resistance to disease/drought

Flowers selected for scent/size etc

Somatic fusion

6 Cells of two varieties /species used

7 Cells walls digested / removed by cellulase to form a protoplast

8 Protoplasts fused together and cell grown into a plant / callous

9 Somatic fusion overcomes sexual incompatibility

max 8 marks Coherence

1 Divide into two paragraphs / subheadings

2 Points 1-5 should be grouped together and at least 3 points given Points 6-7 should be grouped together and at least 2 points given

3 At least 3 points from 1-5 must come first followed by 2 points from 6-7

Any 2 out of the above 3 to get the coherence mark


1 Must NOT give details of natural selection

2 Must have 3 points from 1-5 and 2 points from 5-9 Must have 1 & 2 above to get the relevance mark
Essay Give an account of the osmotic problems of salt water bony fish
and describe how water is maintained in such fish


1. Fish tissue/body fluids has a higher water concentration than the surrounding salt water / fish tissue is hypotonic to the salt water. Or compare salt water to the fish tissue

2. Water lost by osmosis

How water is balanced

3. Drinks sea water

4. Salt removed by chloride secretory glands

5. This is an active process or requires energy

6. Few/small glomeruli in the kidneys

7. Low filtration rate

8. High rate of water reabsorption / Reabsorbs more water

9. Small volume of urine produced


1. In subheadings /paragraphs

2. One point from points 1-2 4 points from points 3-9

3. One point from 1-2 first followed by 4 points from 3-9

Any two for coherence mark


1. Must not give any details of freshwater bony fish

2. One point from points 1-2 4 points from points 3-9

Both for relevance mark

Essay Give an account of the importance of the physiological and
behavioural adaptations shown by the desert rat in water

Physiological adaptations

1 Absence of sweat glands

2 High water absorption in large intestine

3 Reduces water loss in the faeces OR produces dry faeces

4 Efficient reabsorption of water in kidney / nephron / etc

5 Water loss in the urine is low or urine output / volume is low

6 Water vapour in exhaled air is condensed / removed in nasal passages
Behavioural adaptations

7 Lives in a burrow and avoids the heat of the day / where it is cooler

8 Hunts / active at night when it is cooler / to avoid the heat of the day

OR nocturnal to avoid the heat of the day / to hunt / be active when conditions are cooler

9 By staying in the burrow this keeps the air moist / damp / humid Coherence

1. In subheadings / paragraphs

2. 3/4 point from points 1-6

1/2 points from points 7-9 Must be ratio of 4:1 or 3:2

3. the 3/4 points from 1- 6 first followed by 1/2 points from 7 -9

Any two for coherence mark


1. Must not give any details of any other organism

2. Same as 2 from Coherence Both for relevance mark

Foraging behaviour in animals

1. organisms use energy in hunting /foraging for food

2. energy gain must exceed energy loss in foraging/hunting or converse

3. behaviour gives optimal foraging or maximises energy gain

4. any two examples of foraging behaviour - need two to obtain 1 mark

eg description of a search pattern

description of communication by bees ants using a chemical stimulus description of opportunism choosing the best prey size

maximum 4 marks

Social mechanisms of obtaining food

5. group hunting together / show co-operative hunting

6. examples of benefits

reduced energy expenditure or

more chance of catching prey or

larger prey can be hunted or

all / weak members / young get a share of the food

7. in dominance hierarchy there is a rank order or position

8 examples of benefit

weaker members / young get a share of the food

dominant individuals are more experienced and increases the chance of success

in obtaining food

9. a pair / group occupy a territory

10. examples of benefits

territory provides area for gathering food / obtaining food

maximum marks 4 marks Social defence

11 social group can mob / attack a predator

12 predator confused by a large moving group or unable to select an individual

13. members of a group can share look out duties

14. members of a group can protect young / females

maximum 2 marks

B Give an account of water movement through plants under the following headings:

(i) The transpiration stream 8 marks (ii)importance of transpiration stream 2 marks

(i) the transpiration stream

1. Water enters root hairs (1)

2. Water moves from a high water concentration/from HWC down/along a concentration gradient

OR Water moves from a hypotonic solution/moves by osmosis (accept anywhere

but only once) (1)

3. Water moves across the cortex (1)

4. Water moves through cells/through cell walls/through intercellular spaces (1)

5. Continuous/Unbroken column/thread of water in the xylem/the vessels/the stem/the

plant (1)

6. Root pressure helps move water up xylem/up stem/up plant (1)

7. A force/An attraction between water molecules (cohesion) (1)

8. A force/An attraction between xylem/vessels and water molecules (adhesion) (1)

8a. Cohesion and adhesion both named. Note: Award mark for 8a only if zero
marks scored for 7+8 (1)

9. Transpiration draws/pulls water up xylem/up stem/up plant (1)

10. Water evaporates into air spaces of leaf (1)

11. Water (vapour) diffuses out through stomata/through pore (1)

12. Transpiration rate can be increased by increase in temperature/increase in wind
speed/increase in light intensity/decrease in humidity/decrease in air pressure OR
any converse (any one for 1 mark) (1)

Maximum 8 Marks

(ii) Importance of the transpiration stream

13. Uptake/Transport of minerals/nutrients/nutrient ions/salts/a named ion eg

nitrate (1)

14. Cooling effect (1)

15. Provides water for photosynthesis/turgidity/support (1)

Maximum = 2 Maximum

Structure of Hydrophytes


1. Submerged leaves are narrow to reduce the damage by the water current

2. Submerged leaves have no stomata as not needed as not in contact with air

3. Floating leaves have stomata on top as this will bring them in contact with the air

4. long leaf stem (petiole) allows leaf to rise and fall with water level Stem

5. Air filled spaces in stem for buoyancy

6. Xylem in centre in the stem to allow flexibility in the water

Max 3 marks 2 from 1-4 and 1 from 5-6

7. Sun plants need a higher intensity of light to reach their compensation point

8. Sun plants need a high intensity of light to allow them to reach above their compensation point and store food (starch)

9. Shade plants can reach their compensation point at a lower intensity of light

10. Shade plants can get above their compensation point at a lower intensity of light and therefore store food at a lower intensity of light.

max 3 marks 1 must be from 7/8 and 1 from 8/9 Effects of grazing on species diversity

11. Low level of grazing means low species diversity as dominant plant will take over

12. High level of grazing means species diversity increases as this will decrease the dominant plant

13. Very high level of grazing will decrease species diversity as herbivore will eat all the plants

14. Selective grazers will decrease species diversity if they eat only the delicate plants but increase it if the eat the dominant plant

max 3 marks

Tolerate grazing

15. have a low meristems

16. deep roots

17. underground stems max 1 mark

Give an account of transpiration under the following headings:

(i) the effect of environmental factors on transpiration rate 5

(ii) adaptations of xerophyte plants that reduce the transpiration rate 5

Effect of environmental factors on the transpiration stream

1 temperature

2 wind speed

3 light intensity

4 availability of soil water

increase in any of the above may increase transpiration rate

5 humidity

6 air pollution

7 air pressure

increase of 5,6 or 7 may decrease the transpiration stream

max 5 marks

(ii) adaptations of xerophyte plants that reduce the transpiration rate

8 Small leaves OR reduced size of leaves OR reduced number of leaves OR leaves reduced to spines

9 Reduced number of stomata OR reduced stomata density OR fewer stomata so less area to lose water vapour

10 Waxy/thick cuticle so there is a waterproof barrier OR waxy thick cuticle

11 Rolled leaves so moisture trapped round stomata

12 Hairs on leaves so moisture trapped around the stomata

13 Stomata sunk in pits /suncken stomata so moisture trapped around stomata OR stomata less exposed to air

14 reduction in the water concentration gradient

15 reversed stomata rhythm so stomata closed in the middle of the day

Max 5 marks

Give an account of obtaining food in animals by reference to co-operative hunting, dominance hierarchy and territorial behaviour

Co-operative hunting and dominance hierarchy

1 co-operative hunting means animals hunting in a pack / social group / team OR working together to get food

2 Advantages eg larger prey / more successful, less energy used, net gain of energy is greater than foraging alone

3 Another different advantage from list in 2

4 Dominance hierarchy is rank / pecking order within a social group

5 consist of dominant and subordinate individuals

6 In feeding dominant eat first OR dominant get bigger share of food

7 this ensures dominant survives when food is scarce

8 subordinate animal may gain more food than by foraging alone

MAX 2 marks from 1-3 and MAX 3 marks from 4-8

territorial behaviour

9 territory / area is marked / defended for feeding / hunting

10 ensures a food supply / must contain enough food OR the more food available the smaller the territory

11 Territorial behaviour reduces competition

12 Energy expended in marking / patrolling / defending territory

13 Gain of energy increased by lack of competition OR foraging made more economical MAX 3 marks

coherence divided into 2 or 3 paragraphs + 3 points from 1-8 and 2 points from 9-13

relevance as above but must not give information on individual foraging, mating behaviour or social defence

Download 75.5 Kb.

Share with your friends:

The database is protected by copyright © 2022
send message

    Main page